Enabling smarter auditing for Salesforce customers

Discover how DataBahn's Application Data Fabric enables smarter and faster analytics for CIOs and Data Teams for data-driven decision-making

Big Data Challenges
December 18, 2024
||

Enabling smarter and more efficient analytics for Salesforce customers

As the world's leading customer relationship management (CRM) platform, Salesforce has revolutionized the way businesses manage customer relationships and has become indispensable for companies of all sizes. It powers 150,000 companies globally, including 80% of Fortune 500 corporations, and boasts a 21.8% market share in the CRM space - more than its four leading competitors combined. Salesforce becomes the central repository of essential and sensitive customer data, centralizing data from different sources. For many of their customers, Salesforce becomes the single source of truth for customer data, which includes critical transactional and business-critical data with significant security and compliance relevance.

Business leaders need to analyze transaction data for business analytics and dashboarding to enable data-driven decision-making across the organization. However, analyzing Salesforce data (or any other SaaS application) requires significant manual effort and places constraints on data and security engineering bandwidth.

We were able to act as an application data fabric and help a customer optimize Salesforce data analytics and auditing with DataBahn.

How DataBahn's application data fabric enables faster and more efficient real-time analytics  Read More  

Why is auditing important for Salesforce?

How are auditing capabilities used by application owners?

SaaS applications such as Salesforce have two big auditing use cases - transaction analysis for business analytics reporting and security monitoring on application access. Transaction analysis on Salesforce data is business critical and is often used to build dashboards and analytics for the C-suite to evaluate key outcomes such as sales effectiveness, demand generation, pipeline value, and potential, customer retention, customer lifetime value, etc. Aggregating data into Salesforce to track revenue generation and associated metrics, and translating them into real-time insights, drives essential data-driven decision-making and strategy for organizations. From a security perspective, it is essential to effectively manage and monitor this data and control access to it. Security teams have to monitor how these applications and the underlying data are accessed, and the prevalent AAA (Authentication, Authorization, and Accounting) framework necessitates a detailed security log and audit to protect data and proactively detect threats.

Why are native audit capabilities not enough?

While auditing capabilities are available, using them requires considerable manual effort. Data needs to be imported manually to be usable for dashboarding. Additionally, data retention windows in these applications natively are short and are not conducive for comprehensive analysis, which is required for both business analytics and security monitoring. This means that data needs to be manually exported from Salesforce or other applications (individual audit reports), cleaned up manually, and then exported to a data lake to perform analytics. Organizations can explore solutions like Databricks or Amazon Security Lake to improve visibility and data security across cloud environments.

Why is secured data retention for auditing critical?

Data stored in SaaS applications is increasingly becoming a target for malicious actors given its commercial importance. Ransomware attacks and data breaches have become more common, and a recent breach in Knowledge Bases for a major global SaaS application is a wake-up call for businesses to focus on securing the data they store in SaaS applications or export from it.

DataBahn as a solution

DataBahn acts as an application data fabric, a middleware solution. Using DataBahn, businesses can easily fork data to multiple consumers and destinations, reducing data engineering effort and ensuring that high-quality data was being sent to wherever it needed to be for both simple (storage) or higher-order functions (analytics and dashboards). With a single-click integration, DataBahn prepares SaaS application data from Salesforce or a variety of other SaaS applications - Servicenow, Okta, etc. available for business analytics and security threat detection.

Using DataBahn also helps businesses more efficiently leverage a data lake, a BI solution, or SIEM. The platform enriches data and enables transformation into different relevant formats without manual effort. Discover these and other benefits of using an Application Data Fabric to collect, manage, control, and govern data movement.

Uncover hidden visitor insights to improve their website journey
Share

See related articles

In their article about how banks can extract value from a new generation of AI technology, notable strategy and management consulting firm McKinsey identified AI-enabled data pipelines as an essential part of the ‘Core Technology and Data Layer’. They found this infrastructure to be necessary for AI transformation, as an important intermediary step in the evolution banks and financial institutions will have to make for them to see tangible results from their investments in AI.

The technology stack for the AI-powered banking of the future relies greatly on an increased focus on managing enterprise data better. McKinsey’s Financial Services Practice forecasts that with these tools, banks will have the capacity to harness AI and “… become more intelligent, efficient, and better able to achieve stronger financial performance.

What McKinsey says

The promise of AI in banking

The authors point to increased adoption of AI across industries and organizations, but the depth of the adoption remains low and experimental. They express their vision of an AI-first bank, which -

  1. Reimagines the customer experience through personalization and streamlined, frictionless use across devices, for bank-owned platforms and partner ecosystems
  2. Leverages AI for decision-making, by building the architecture to generate real-time insights and translating them into output which addresses precise customer needs. (They could be talking about Reef)
  3. Modernizes core technology with automation and streamlined architecture to enable continuous, secure data exchange (and now, Cruz)

They recommend that banks and financial service enterprises set a bold vision for AI-powered transformation, and root the transformation in business value.

AI stack powered by multiagent systems

The true potential of AI will require banks of the future to tread beyond just AI models, the authors claim. With embedding AI into four capability layers as the goal, they identify ‘data and core tech’ as one of those four critical components. They have augmented an earlier AI capability stack, specifically adding data preprocessing, vector databases, and data post-processing to create an ‘enterprise data’ part of the ‘core technology and data layer’. They indicate that this layer would build a data-driven foundation for multiple AI agents to deliver customer engagement and enable AI-powered decision-making across various facets of a bank’s functioning.

Our perspective

Data quality is the single greatest predictor of LLM effectiveness today, and our current generation of AI tools are fundamentally wired to convert large volumes of data into patterns, insights, and intelligence. We believe the true value of enterprise AI lies in depth, where Agentic AI modules can speak and interact with each other while automating repetitive tasks and completing specific and niche workstreams and workflows. This is only possible when the AI modules have access to purposeful, meaningful, and contextual data to rely on.

We are already working with multiple banks and financial services institutions to enable data processing (pre and post), and our Cruz and Reef products are deployed in many financial institutions to become the backbone of their transformation into AI-first organizations.

Are you curious to see how you can come closer to building the data infrastructure of the future? Set up a call with our experts to see what’s possible when data is managed with intelligence.

Two years ago, our DataBahn journey began with a simple yet urgent realization: security data management is fundamentally flawed. Enterprises are overwhelmed by security and telemetry, struggling to collect, store, and process it, while finding it harder and harder to gain timely insights from it. As leaders and practitioners in cybersecurity, data engineering, and data infrastructure, we saw this pattern everywhere: spiraling SIEM costs, tool sprawl, noisy data, tech debt, brittle pipelines, and AI initiatives blocked by legacy systems and architectures.

We founded DataBahn to break this cycle. Our platform is specifically designed to help enterprises regain control: disconnecting data pipelines from outdated tools, applying AI to automate data engineering, and constructing systems that empower security, data, and IT teams. We believe data infrastructure should be dynamic, resilient, and scalable, and we are creating systems that leverage these core principles to enhance efficiency, insight, and reliability.

Today, we’re announcing a significant milestone in this journey: a $17M Series A funding round led by Forgepoint Capital, with participation from S3 Ventures and returning investor GTM Capital. Since coming out of stealth, our trajectory has been remarkable – we’ve secured a Fortune 10 customer and have already helped several Fortune 500 and Global 200 companies cut over 50% of their telemetry processing costs and automate most of their data engineering workloads. We're excited by this opportunity to partner with these incredible customers and investors to reimagine how telemetry data is managed.

Tackling an industry problem

As operators, consultants, and builders, we worked with and interacted with CISOs across continents who complained about how they had gone from managing gigabytes of data every month to being drowned by terabytes of data daily, while using the same pipelines as before. Layers and levels of complexity were added by proprietary formats, growing disparity in sources and devices, and an evolving threat landscape. With the advent of Generative AI, CISOs and CIOs found themselves facing an incredible opportunity wrapped in an existential threat, and without the right tools to prepare for it.

DataBahn is setting a new benchmark for how modern enterprises and their CISO/CIOs can manage and operationalize their telemetry across security, observability, and IOT/OT systems and AI ecosystems. Built on a revolutionary AI-driven architecture, DataBahn parses, enriches, and suppresses noise at scale, all while minimizing egress costs. This is the approach our current customers are excited about, because it addresses key pain points they have been unable to solve with other solutions.

Our two new Agentic AI products are solving problems for enterprise data engineering and analytics teams. Cruz automates complex data engineering tasks from log discovery, pipeline creation, tracking and maintaining telemetry health, to providing insights on data quality. Reef surfaces context-aware and enriched insights from streaming telemetry data, turning hours of complex querying across silos into seconds of natural-language queries.

The Right People

We’re incredibly grateful to our early customers; their trust, feedback, and high expectations have shaped who we are. Their belief drives us every day to deliver meaningful outcomes. We’re not just solving problems with them, we’re building long-term partnerships to help enterprise security and IT teams take control of their data, and design systems that are flexible, resilient, and built to last. There’s more to do, and we’re excited to keep building together.

We’re also deeply thankful for the guidance and belief of our advisors, and now our investors. Their support has not only helped us get here but also sharpened our understanding of the opportunity ahead. Ernie, Aaron, and Saqib’s support has made this moment more meaningful than the funding; it’s the shared conviction that the way enterprises manage and use data must fundamentally change. Their backing gives us the momentum tomove faster, and the guidance to keep building towards that mission.

Above all, we want to thank our team. Your passion, resilience, and belief in what we’re building together are what got us here. Every challenge you’ve tackled, every idea you’ve contributed, every late night and early morning has laid the foundation for what we have done so far and for what comes next. We’re excited about this next chapter and are grateful to have been on this journey with all of you.

The Next Chapter

The complexity of enterprise data management is growing exponentially. But we believe that with the right foundation, enterprises can turn that complexity into clarity, efficiency, and competitive advantage.

If you’re facing challenges with your security or observability data, and you’re ready to make your data work smarter for AI, we’d love to show you what DataBahn can do. Request a demo and see how we can help.

Onwards and upwards!

Nanda and Nithya
Cofounders, DataBahn

In September 2022, cybercriminals accessed, encrypted, and stole a substantial amount of data from Suffolk County’s IT systems, which included personally identifiable information (PII) of county residents, employees, and retirees. Although Suffolk County did not pay the ransom demand of $2.5 million, it ultimately spent $25 million to address and remediate the impact of the attack.

Members of the county’s IT team reported receiving hundreds of alerts every day in the weeks leading up to the attack. Several months earlier, frustrated by the excessive number of unnecessary alerts, the team redirected the notifications from their tools to a Slack channel. Although the frequency and severity of the alerts increased leading up to the September breach, the constant stream of alerts wore the small team down, leaving them too exhausted to respond and distinguish false positives from relevant alerts. This situation created an opportunity for malicious actors to successfully circumvent security systems.

The alert fatigue problem

Today, cybersecurity teams are continually bombarded by alerts from security tools throughout the data lifecycle. Firewalls, XDRs/EDRs, and SIEMs are among the common tools that trigger these alerts. In 2020, Forrester reported that SOC teams received 11,000 alerts daily, and 55% of cloud security professionals admitted to missing critical alerts. Organizations cannot afford to ignore a single alert, yet alert fatigue (and an overwhelming number of unnecessary alerts) causes SOCs to miss up to 30% of security alerts that go uninvestigated or are completely overlooked.

While this creates a clear cybersecurity and business continuity problem, it also presents a pressing human issue. Alert fatigue leads to cognitive overload, emotional exhaustion, and disengagement, resulting in stress, mental health concerns, and attrition. More than half of cybersecurity professionals cite their workload as the primary source of stress, two-thirds reported experiencing burnout, and over 60% of cybersecurity professionals surveyed stated it contributed to staff turnover and talent loss.

Alert fatigue poses operational challenges, represents a critical security risk, and truly becomes an adversary of the most vital resource that enterprises rely on for their security — SOC professionals doing their utmost to combat cybercriminals. SOCs are spending so much time and effort triaging alerts and filtering false positives that there’s little room for creative threat hunting.

Data is the problem – and the solution

Alert fatigue is a result, not a root cause. When these security tools were initially developed, cybersecurity teams managed gigabytes of data each month from a limited number of computers on physically connected sites. Today, Security Operations Centers (SOCs) are tasked with handling security data from thousands of sources and devices worldwide, which arrive through numerous distinct devices in various formats. The developers of these devices did not intend to simplify the lives of security teams, and the tools they designed to identify patterns often resemble a fire alarm in a volcano. The more data that is sent as an input to these machines, the more likely they are to malfunction – further exhausting and overwhelming already stretched security teams.

Well-intentioned leaders advocate for improved triaging, the use of automation, refined rules to reduce false-positive rates, and the application of popular technologies like AI and ML. Until we can stop security tools from being overwhelmed by large volumes of unstructured, unrefined, and chaotic data from diverse sources and formats, these fixes will be band aids on a gaping wound.

The best way to address alert fatigue is to filter out the data being ingested into downstream security tools. Consolidate, correlate, parse, and normalize data before it enters your SIEM or UEBA. If it isn’t necessary, store it in blob storage. If it’s duplicated or irrelevant, discard it. Don’t clutter your SIEM with poor data so it doesn’t overwhelm your SOC with alerts no one requested.

How Databahn helps

At DataBahn, we help enterprises cut through cybersecurity noise with our security data pipeline solution, which works around the clock to:

1. Aggregates and normalizes data across tools and environments automatically

2. Uses AI-driven correlation and prioritization

3. Denoises the data going into the SIEM, ensuring more actionable alerts with full context

SOCs using DataBahn aren’t overwhelmed with alerts; they only see what’s relevant, allowing them to respond more quickly and effectively to threats. They are empowered to take a more strategic approach in managing operations, as their time isn’t wasted triaging and filtering out unnecessary alerts.

Organizations looking to safeguard their systems – and protect their SOC members – should shift from raw alert processing to smarter alert management, driven by an intelligent pipeline which combines automation, correlation, and transformation that filters out the noise and combats alert fatigue.

Interested in saving your SOC from alert fatigue? Contact DataBahn
In the past, we've written about how we solve this problem for Sentinel. You can read more here: 
AI-powered Sentinel Log Optimization