Enabling smarter auditing for Salesforce customers

Discover how DataBahn's Application Data Fabric enables smarter and faster analytics for CIOs and Data Teams for data-driven decision-making

Big Data Challenges
December 18, 2024
||

Enabling smarter and more efficient analytics for Salesforce customers

As the world's leading customer relationship management (CRM) platform, Salesforce has revolutionized the way businesses manage customer relationships and has become indispensable for companies of all sizes. It powers 150,000 companies globally, including 80% of Fortune 500 corporations, and boasts a 21.8% market share in the CRM space - more than its four leading competitors combined. Salesforce becomes the central repository of essential and sensitive customer data, centralizing data from different sources. For many of their customers, Salesforce becomes the single source of truth for customer data, which includes critical transactional and business-critical data with significant security and compliance relevance.

Business leaders need to analyze transaction data for business analytics and dashboarding to enable data-driven decision-making across the organization. However, analyzing Salesforce data (or any other SaaS application) requires significant manual effort and places constraints on data and security engineering bandwidth.

We were able to act as an application data fabric and help a customer optimize Salesforce data analytics and auditing with DataBahn.

How DataBahn's application data fabric enables faster and more efficient real-time analytics  Read More  

Why is auditing important for Salesforce?

How are auditing capabilities used by application owners?

SaaS applications such as Salesforce have two big auditing use cases - transaction analysis for business analytics reporting and security monitoring on application access. Transaction analysis on Salesforce data is business critical and is often used to build dashboards and analytics for the C-suite to evaluate key outcomes such as sales effectiveness, demand generation, pipeline value, and potential, customer retention, customer lifetime value, etc. Aggregating data into Salesforce to track revenue generation and associated metrics, and translating them into real-time insights, drives essential data-driven decision-making and strategy for organizations. From a security perspective, it is essential to effectively manage and monitor this data and control access to it. Security teams have to monitor how these applications and the underlying data are accessed, and the prevalent AAA (Authentication, Authorization, and Accounting) framework necessitates a detailed security log and audit to protect data and proactively detect threats.

Why are native audit capabilities not enough?

While auditing capabilities are available, using them requires considerable manual effort. Data needs to be imported manually to be usable for dashboarding. Additionally, data retention windows in these applications natively are short and are not conducive for comprehensive analysis, which is required for both business analytics and security monitoring. This means that data needs to be manually exported from Salesforce or other applications (individual audit reports), cleaned up manually, and then exported to a data lake to perform analytics. Organizations can explore solutions like Databricks or Amazon Security Lake to improve visibility and data security across cloud environments.

Why is secured data retention for auditing critical?

Data stored in SaaS applications is increasingly becoming a target for malicious actors given its commercial importance. Ransomware attacks and data breaches have become more common, and a recent breach in Knowledge Bases for a major global SaaS application is a wake-up call for businesses to focus on securing the data they store in SaaS applications or export from it.

DataBahn as a solution

DataBahn acts as an application data fabric, a middleware solution. Using DataBahn, businesses can easily fork data to multiple consumers and destinations, reducing data engineering effort and ensuring that high-quality data was being sent to wherever it needed to be for both simple (storage) or higher-order functions (analytics and dashboards). With a single-click integration, DataBahn prepares SaaS application data from Salesforce or a variety of other SaaS applications - Servicenow, Okta, etc. available for business analytics and security threat detection.

Using DataBahn also helps businesses more efficiently leverage a data lake, a BI solution, or SIEM. The platform enriches data and enables transformation into different relevant formats without manual effort. Discover these and other benefits of using an Application Data Fabric to collect, manage, control, and govern data movement.

Ready to unlock full potential of your data?
Share

See related articles

The global market for healthcare AI is booming – projected to exceed $110 billion by 2030. Yet this growth masks a sobering reality: roughly 80% of healthcare AI initiatives fail to deliver value. The culprit is rarely the AI models themselves. Instead, the failure point is almost always the underlying data infrastructure.

In healthcare, data flows in from hundreds of sources – patient monitors, electronic health records (EHRs), imaging systems, and lab equipment. When these streams are messy, inconsistent, or fragmented, they can cripple AI efforts before they even begin.  

Healthcare leaders must therefore recognize that robust data pipelines – not just cutting-edge algorithms – are the real foundation for success. Clean, well-normalized, and secure data flowing seamlessly from clinical systems into analytics tools is what makes healthcare data analysis and AI-powered diagnostics reliable. In fact, the most effective AI in diagnostics, population health, and drug discovery operate on curated and compliant data. As one thought leader puts it, moving too fast without solid data governance is exactly why “80% of AI initiatives ultimately fail” in healthcare (Health Data Management).

Against this backdrop, healthcare CISOs and informatics leaders are asking: how do we build data pipelines that tame device sprawl, eliminate “noisy” logs, and protect patient privacy, so AI tools can finally deliver on their promise? The answer lies in embedding intelligence and controls throughout the pipeline – from edge to cloud – while enforcing industry-wide schemas for interoperability.

Why Data Pipelines, Not Models, Are the Real Barrier

AI models have improved dramatically, but they cannot compensate for poor pipelines. In healthcare organizations, data often lives in silos – clinical labs, imaging centers, monitoring devices, and EHR modules – each with its own format. Without a unified pipeline to ingest, normalize, and enrich this data, downstream AI models receive incomplete or inconsistent inputs.

AI-driven SecOps depends on high-quality, curated telemetry. Messy or ungoverned data undermines model accuracy and trustworthiness. The same principle holds true for healthcare AI. A disease-prediction model trained on partial or duplicated patient records will yield unreliable results.

The stakes are high because healthcare data is uniquely sensitive. Protected Health Information (PHI) or even system credentials often surface in logs, sometimes in plaintext. If pipelines are brittle, every schema change (a new EHR field, a firmware update on a ventilator) risks breaking downstream analytics.

Many organizations focus heavily on choosing the “right” AI model – convolutional, transformer, or foundation model – only to realize too late that the harder problem is data plumbing. As one industry expert summarized: “It’s not that AI isn’t ready – it’s that we don’t approach it with the right strategy.” In other words, better models are meaningless without robust data pipeline management to feed them complete, consistent, and compliant clinical data.

Pipeline Challenges in Hybrid Healthcare Environments

Modern healthcare IT is inherently hybrid: part on-premises, part cloud, and part IoT/OT device networks. This mix introduces several persistent pipeline challenges:

  • Device Sprawl. Hospitals and life sciences companies rely on tens of thousands of devices – from bedside monitors and infusion pumps to imaging machines and factory sensors – each generating its own telemetry. Without centralized discovery, many devices go unmonitored or “silent.” DataBahn identified more than 3,000 silent devices in a single manufacturing network. In a hospital, that could mean blind spots in patient safety and security.
  • Telemetry Gaps. Devices may intermittently stop sending logs due to low power, network issues, or misconfigurations. Missing data fields (e.g., patient ID on a lab result) break correlations across data sources. Without detection, errors in patient analytics or safety monitoring can go unnoticed.
  • Schema Drift & Format Chaos. Healthcare data comes in diverse formats – HL7, DICOM, JSON, proprietary logs. When device vendors update firmware or hospitals upgrade systems, schemas change. Old parsers fail silently, and critical data is lost. Schema drift is one of the most common and dangerous failure modes in clinical data management.
  • PHI & Compliance Risk. Clinical telemetry often carries identifiers, diagnostic codes, or even full patient records. Forwarding this unchecked into external analytics systems creates massive liability under HIPAA or GDPR. Pipelines must be able to redact PHI at source, masking identifiers before they move downstream.

These challenges explain why many IT teams get stuck in “data plumbing.” Instead of focusing on insight, they spend time writing parsers, patching collectors, and firefighting noise overload. The consequences are predictable: alert fatigue, siloed analysis, and stalled AI projects. In hybrid healthcare systems, missing this foundation makes AI goals unattainable.

Lessons from a Medical Device Manufacturer

A recent DataBahn proof-of-concept with a global medical device manufacturer shows how fixing pipelines changes the game.

Before DataBahn, the company was drowning in operational technology (OT) telemetry. By deploying Smart Edge collectors and intelligent reduction at the edge, they achieved immediate impact:

  • SIEM ingestion dropped by ~50%, cutting licensing costs in half while retaining all critical alerts.
  • Thousands of trivial OT logs (like device heartbeats) were filtered out, reducing analyst noise.
  • 40,000+ devices were auto-discovered, with 3,000 flagged as silent – issues that had been invisible before.
  • Over 50,000 instances of sensitive credentials accidentally logged were automatically masked.

The results: cost savings, cleaner data, and unified visibility across IT and OT. Analysts could finally investigate threats with full enterprise context. More importantly, the data stream became interoperable and AI-ready, directly supporting healthcare applications like population health analysis and clinical data interoperability.

How DataBahn’s Platform Solves These Challenges

DataBahn’s AI-powered fabric is built to address pipeline fragility head-on:

  • Smart Edge. Collectors deployed at the edge (hospitals, labs, factories) provide lossless data capture across 400+ integrations. They filter noise (dropping routine heartbeats), encrypt traffic, and detect silent or rogue devices. PHI is masked right at the source, ensuring only clean, compliant data enters the pipeline.
  • Data Highway. The orchestration layer normalizes all logs into open schemas (OCSF, CIM, FHIR) for true healthcare data interoperability. It enriches records with context, deduplicates duplicates, and routes data to the right tier: SIEM for critical alerts, lakes for research, cold storage for compliance. Customers routinely see a 45% cut in raw volume sent to analytics.
  • Cruz AI. An autonomous engine that learns schemas, adapts to drift, and enforces quality. Cruz auto-updates parsing rules when new fields appear (e.g., a genetic marker in a lab result). It also detects PHI or credentials across unknown formats, applying masking policies automatically.
  • Reef. DataBahn’s AI-powered insight layer, Reef converts telemetry into searchable, contextualized intelligence. Instead of waiting for dashboards, analysts and clinicians can query data in plain language and receive insights instantly. In healthcare, Reef makes clinical telemetry not just stored but actionable – surfacing anomalies, misconfigurations, or compliance risks in seconds.

Together, these components create secure, standardized, and continuously AI-ready pipelines for healthcare data management.

Impact on AI and Healthcare Outcomes

Strong pipelines directly influence AI performance across use cases:

  • Diagnostics. AI-driven radiology and pathology tools rely on clean images and structured patient histories. One review found generative-AI radiology reports reached 87% accuracy vs. 73% for surgeons. Pipelines that normalize imaging metadata and lab results make this accuracy achievable in practice.
  • Population Health. Predictive models for chronic conditions or outbreak monitoring require unified datasets. The NHS, analyzing 11 million patient records, used AI to uncover early signs of hidden kidney cancers. Such insights depend entirely on harmonized pipelines.
  • Drug Discovery. AI mining trial data or real-world evidence needs de-identified, standardized datasets (FHIR, OMOP). Poor pipelines lead to wasted effort; robust pipelines accelerate discovery.
  • Compliance. Pipelines that embed PHI redaction and lineage tracking simplify HIPAA and GDPR audits, reducing legal risk while preserving data utility.

The conclusion is clear: robust pipelines make AI trustworthy, compliant, and actionable.

Practical Takeaways for Healthcare Leaders

  • Filter & Enrich at the Edge. Drop irrelevant logs early (heartbeats, debug messages) and add context (device ID, department).
  • Normalize to Open Schemas. Standardize streams into FHIR, CDA, OCSF, or CIM for interoperability.
  • Mask PHI Early. Apply redaction at the first hop; never forward raw identifiers downstream.
  • Avoid Collector Sprawl. Use unified collectors that span IT, OT, and cloud, reducing maintenance overhead.
  • Monitor for Drift. Continuously track missing fields or throughput changes; use AI alerts to spot schema drift.
  • Align with Frameworks. Map telemetry to frameworks like MITRE ATT&CK to prioritize valuable signals.
  • Enable AI-Ready Data. Tokenize fields, aggregate at session or patient level, and write structured records for machine learning.

Treat your pipeline as the control plane for clinical data management. These practices not only cut cost but also boost detection fidelity and AI trust.

Conclusion: Laying the Groundwork for Healthcare AI

AI in healthcare is only as strong as the pipelines beneath it. Without clean, governed data flows, even the best models fail. By embedding intelligence at every stage – from Smart Edge collection, to normalization in the Data Highway, to Cruz AI’s adaptive governance, and finally to Reef’s actionable insight – healthcare organizations can ensure their AI is reliable, compliant, and impactful.

The next decade of healthcare innovation will belong to those who invest not only in models, but in the pipelines that feed them.

If you want to see how this looks in practice, explore the case study of a medical device manufacturer. And when you’re ready to uncover your own silent devices, reduce noise, and build AI-ready pipelines, book a demo with us. In just weeks, you’ll see your data transform from a liability into a strategic asset for healthcare AI.

Financial data flows are some of the most complex in any industry. Trades, transactions, positions, valuations, and reference data all pass through ETL jobs, market feeds, and risk engines before surfacing in reports. Multiply that across desks, asset classes, and jurisdictions, and tracing a single figure back to its origin becomes nearly impossible. This is why data lineage has become essential in financial services, giving institutions the ability to show how data moved and transformed across systems. So, when regulators, auditors, or even your own board ask: “Where did this number come from?” too many teams still don’t have a clear answer.

The stakes couldn’t be higher. Across frameworks like BCBS-239, the Financial Data Transparency Act, and emerging supervisory guidelines in Europe, APAC, and the Middle East, regulators are raising the bar. Banks that have adopted modern data lineage tools report 57% faster audit prep and ~40% gains in engineering productivity, yet progress remains slow — surveys show that fewer than 10% of global banks are fully compliant with BCBS-239 principles. The result is delayed audits, costly manual investigations, and growing skepticism from regulators and stakeholders alike.

The takeaway is simple: data lineage is no longer optional. It has become the foundation for compliance, risk model validation, and trust. For financial services, what data lineage means is simple: without it, compliance is reactive and fragile; with it, auditability and transparency become operational strengths.

In the rest of this blog, we’ll explore why lineage is so hard to achieve in financial services, what “good” looks like, and how modern approaches are closing the gap.

Why data lineage is so hard to achieve in Financial Services

If lineage were just “draw arrows between systems,” we’d be done. In the real world it fails because of technical edge cases and organizational friction, the stuff that makes tracing a number feel like detective work.

Siloed ownership and messy handoffs
Trade, market, reference and risk systems are often owned by separate teams with different priorities. A single calculation can touch five teams and ten systems; tracing it requires stepping across those boundaries and reconciling different glossaries and operational practices. This isn’t just technical overhead but an ownership problem that breaks automated lineage capture.  

Opaque, undocumented transforms in the middle
Lineage commonly breaks inside ETL jobs, bespoke SQL, or one-off spreadsheets. Those transformation steps encode business logic that rarely gets cataloged, and regulators want to know what logic ran, who changed it, and when. That gap is one of the recurring blockers to proving traceability.  

Temporal and model lineage
Financial reporting and model validation require not just “where did this value come from?” but “what did it look like at time T?” Capturing temporal snapshots and ensuring you can reconstruct the exact input set for a historical run (with schema versions, parameter sets, and market snapshots) adds another layer of complexity most lineage tools don’t handle out of the box.  

Scaling lineage without runaway costs
Lineage at scale is expensive. Streaming trades, tick data and high-cardinality reference tables generate huge volumes of metadata if you try to capture full, row-level lineage. Teams need to balance fidelity, cost, and query ability, and that trade-off is a frequent operational headache.  

Organizational friction and change management
Technical fixes only work when governance, process and incentives change too. Lineage rollout touches risk, finance, engineering and compliance, aligning those stakeholders, enforcing cataloging discipline, and maintaining lineage over time is a people problem as much as a technology one.

The real challenge isn’t drawing arrows between systems but designing lineage that regulators can trust, engineers can maintain, and auditors can use in real time. That’s the standard the industry is now being measured against.

What good Data Lineage looks like in finance

Great lineage in financial services doesn’t look like a prettier diagram; it feels like control. The moment an auditor asks, “Where did this number come from?” the answer should take minutes, not weeks. That’s the benchmark.

It’s continuous, not reactive.
Lineage isn’t something you piece together after an audit request. It’s captured in real time as data flows — across trades, models, and reports — so the evidence is always ready.

It’s explainable to both engineers and auditors.
Engineers should see schema versions, transformations, and dependencies. Auditors should see clear traceability and business definitions. Good lineage bridges both worlds without translation exercises.

It scales with the business.
From millions of daily trades to real-time model recalculations, lineage must capture detail without exploding into unusable metadata. That means selective fidelity, efficient storage, and fast query ability built in.

It integrates governance, not adds it later.
Lineage should carry sensitivity tags, policy markers, and glossary links as data moves. Compliance is strongest when it’s embedded upstream, not enforced after the fact.

The point is simple: an effective data lineage makes defensibility the default. It doesn’t slow down data flows or burden teams with extra work. Instead, it builds confidence that every calculation, every report, and every disclosure can be traced and trusted.

Databahn in practice:  Data Lineage as part of the flow

Databahn captures lineage as data moves, not after it lands. Rather than relying on manual cataloging, the platform instruments ingestion, parsing, transformation and routing layers so every change — schema update, join, enrichment or filter — is recorded as part of normal pipeline execution. That means auditors, risk teams and engineers can reconstruct a metric, replay a run, or trace a root cause without digging through ad-hoc scripts or spreadsheets.

In production, that capture is combined with selective fidelity controls, snapshotting for time-travel, and business-friendly lineage views so traceability is both precise for engineers and usable for non-technical stakeholders.

Here are a few of the key features in Databahn’s arsenal and how they enable practical lineage:

  • Seamless lineage with Highway
    Every routing and transformation is tracked natively, giving a complete view from source to report without blind spots.
  • Real-time visibility and health monitoring
    Continuous observability across pipelines detects lineage breaks, schema drift, or anomalies as they happen — not months later.
  • Governance with history recall and replay
    Metadata tagging and audit trails preserve data history so any past report or model run can be reconstructed exactly as it appeared.
  • In-flight sensitive data handling
    PII and regulated fields can be masked, quarantined, or tagged in motion, with those transformations recorded as part of the audit trail.
  • Schema drift detection and normalization
    Automatic detection and normalization keep lineage consistent when upstream systems change, preventing gaps that undermine compliance.

The result is lineage that financial institutions can rely on, not just to pass regulatory checks, but to build lasting trust in their reporting and risk models. With Databahn, data lineage becomes a built-in capability, giving institutions confidence that every number can be traced, defended, and trusted.

The future of Data Lineage in finance

Lineage is moving from a compliance checkbox to a living capability. Regulators worldwide are raising expectations, from the Financial Data Transparency Act (FDTA) in the U.S., to ECB/EBA supervisory guidance in Europe, to data risk frameworks in APAC and the Middle East. Across markets, the signal is the same: traceability can’t be partial or reactive, it has to be continuous.

AI is at the center of this shift. Where teams once relied on static diagrams or manual cataloging, AI now powers:

  • Automated lineage capture – extracting flows directly from SQL, ETL code, and pipeline metadata.
  • Drift and anomaly detection – spotting schema changes or unusual transformations before they become audit findings.
  • Metadata enrichment – linking technical fields to business definitions, tagging sensitive data, and surfacing lineage in auditor-friendly terms.
  • Proactive remediation – recommending fixes, rerouting flows, or even self-healing pipelines when lineage breaks.

This is also where modern platforms like Databahn are heading. Rather than stop at automation, Databahn applies agentic AI that learns from pipelines, builds context, and acts, whether that’s updating lineage after a schema drift, tagging newly discovered sensitive fields, or ensuring audit trails stay complete.

Looking forward, financial institutions will also see exploration of immutable lineage records (using distributed ledger technologies) and standardized taxonomies to reduce cross-border compliance friction. But the trajectory is already clear: lineage is becoming real-time, AI-assisted, and regulator-ready by default, and platforms with agentic AI at their core are leading that evolution.

Conclusion: Lineage as the Foundation of Trust

Financial institutions can’t afford to treat lineage as a back-office detail. It’s become the foundation of compliance, the enabler of model validation, and the basis of trust in every reported number.

As regulators raise the bar and AI reshapes data management, the institutions that thrive will be the ones that make traceability a built-in capability, not an afterthought. That’s why modern platforms like DataBahn are designed with lineage at the core. By capturing data in motion, applying governance upstream, and leveraging agentic AI to keep pipelines audit-ready, they make defensibility the default.

If your institution is asking tougher questions about “where did this number come from?”, now is the time to strengthen your lineage strategy. Explore how Databahn can help make compliance, trust, and auditability a natural outcome of your data pipelines. Get in touch for a demo!

Every October, Cybersecurity Awareness Month rolls around with the same checklist: patch your systems, rotate your passwords, remind employees not to click sketchy links. Important, yes – but let’s be real: those are table stakes. The real risks security teams wrestle with every day aren’t in a training poster. They’re buried in sprawling data pipelines, brittle integrations, and the blind spots attackers know how to exploit.

The uncomfortable reality is this: all the awareness in the world won’t save you if your cybersecurity data pipelines are broken.

Cybersecurity doesn’t fail because attackers are too brilliant. It fails because organizations can’t move their data safely, can’t access it when needed, and can’t escape vendor lock-in while dealing with data overload. For too long, we’ve built an industry obsessed with collecting more data instead of ensuring that data can flow freely and securely through pipelines we actually control.

It’s time to embrace what many CISOs, SOC leaders, and engineers quietly admit: your security posture is only as strong as your ability to move and control your data.

The Hidden Weakness: Cybersecurity Data Pipelines

Every security team depends on pipelines, the unseen channels that collect, normalize, and route security data across tools and teams. Logs, telemetry, events, and alerts move through complex pipelines connecting endpoints, networks, SIEMs, and analytics platforms.

And yet, pipelines are treated like plumbing. Invisible until they burst. Without resilient pipelines, visibility collapses, detections fail, and incident response slows to a crawl.

Security teams drowning in data yet starved for the right insights because their pipelines were never designed for flexibility or scale. Awareness campaigns should shine a light on this blind spot. Teams must not only know how phishing works but also how their cybersecurity data pipelines work — where they’re brittle, where data is locked up, and how quickly things can unravel when data can’t move.

Data Without Movement Is Useless

Here’s a hard truth: security data at rest is as dangerous as uncollected evidence.

Storing terabytes of logs in a single system doesn’t make you safer. What matters is whether you can move security data safely when incidents strike.

  • Can your SOC pivot logs into a different analytics platform when a breach unfolds?
  • Can compliance teams access historical data without waiting weeks for exports?
  • Can threat hunters correlate data across environments without being blocked by proprietary formats?

When data can’t move, it becomes a liability. Organizations have failed audits because they couldn’t produce accessible records. Breaches have escalated because critical logs were locked in a vendor’s silo. SOCs have burned out on alert fatigue because pipelines dumped raw, unfiltered data into their SIEM.

Movement is power. Databahn products are designed around the principle that data only has value if it’s accessible, portable, and secure in motion.

Moving Data Safely: The Real Security Priority

Everyone talks about securing endpoints, networks, and identities. But what about the routes your data travels on its way to analysts and detection systems?

The ability to move security data safely isn’t optional. It’s foundational. And “safe” doesn’t just mean encryption at rest. It means:

  • Encryption in motion to protect against interception
  • Role-based access control so only the right people and tools can touch sensitive data
  • Audit trails that prove how and where data flowed
  • Zero-trust principles applied to the pipeline itself

Think of it this way: you wouldn’t spend millions on vaults for your bank and then leave your armored trucks unguarded. Yet many organizations do exactly that, lock down storage, while neglecting the pipelines.

This is why Databahn emphasizes pipeline resilience. With solutions like Cruz, we’ve seen organizations regain control by treating data movement as a first-class security priority, not an afterthought.

A New Narrative: Control Your Data, Control Your Security

At the heart of modern cybersecurity is a simple truth: you control your narrative when you control your data.

Control means more than storage. It means knowing where your data lives, how it flows, and whether you can pivot it when threats emerge. It means refusing to accept vendor black boxes that limit visibility. It means architecting pipelines that give you freedom, not dependency.

This philosophy drives our work at Databahn.  With Reef helping teams shape, access, and govern security data, and Cruz enabling flexible, resilient pipelines. Together, these approaches echo a broader industry need: break free from lock-in, reclaim control, and treat your pipeline as a strategic asset.

Security teams that control their pipelines control their destiny. Those that don’t remain one vendor outage or one pipeline failure away from disaster.

The Path Forward: Building Resilient Cybersecurity Data Pipelines

So how do we shift from fragile to resilient? It starts with mindset. Security leaders must see data pipelines not as IT plumbing but as strategic assets. That shift opens the door to several priorities:

  • Embrace open architectures – Avoid tying your fate to a single vendor. Design pipelines that can route data into multiple destinations.
  • Prioritize safe, audited movement – Treat data in motion with the same rigor you treat stored data. Every hop should be visible, secured, and controlled.
  • Test pipeline resilience – Run drills that simulate outages, tool changes, and rerouting. If your pipeline can’t adapt in hours, you’re vulnerable.
  • Balance cost with control – Sometimes the cheapest storage or analytics option comes with the highest long-term lock-in risk. Awareness must extend to financial and operational trade-offs.

We’ve seen organizations unlock resilience when they stop thinking of pipelines as background infrastructure and start thinking of them as the foundation of cybersecurity itself. This shift isn’t just about tools, it’s about mindset, architecture, and freedom.

The Real Awareness Shift We Need

As Cybersecurity Awareness Month 2025 unfolds, we’ll see the usual campaigns: don’t click suspicious links, don’t ignore updates, don’t recycle passwords. All valuable advice. But we must demand more from ourselves and from our industry.

The real awareness shift we need is this: don’t lose control of your data pipelines.

Because at the end of the day, security isn’t about awareness alone. It’s about the freedom to move, shape, and use your data whenever and wherever you need it.

Until organizations embrace that truth, attackers will always be one step ahead. But when we secure our pipelines, when we refuse lock-in, and when we prioritize safe movement of data, we turn awareness into resilience.

And that is the future cybersecurity needs.

Hi 👋 Let’s schedule your demo

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.

Trusted by leading brands and partners

optiv
mobia
la esfera
inspira
evanssion
KPMG
Guidepoint Security
EY
ESI